Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Peptides ; 154: 170814, 2022 08.
Article in English | MEDLINE | ID: covidwho-1867666

ABSTRACT

The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus' pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme's primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipates , Animals , Coronavirus 3C Proteases , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/metabolism , Protease Inhibitors , Proteomics , Succinates
2.
Front Immunol ; 12: 595343, 2021.
Article in English | MEDLINE | ID: covidwho-1133908

ABSTRACT

Likely as in other viral respiratory diseases, SARS-CoV-2 elicit a local immune response, which includes production and releasing of both cytokines and secretory immunoglobulin (SIgA). Therefore, in this study, we investigated the levels of specific-SIgA for SARS-CoV-2 and cytokines in the airways mucosa 37 patients who were suspected of COVID-19. According to the RT-PCR results, the patients were separated into three groups: negative for COVID-19 and other viruses (NEGS, n = 5); negative for COVID-19 but positive for the presence of other viruses (OTHERS, n = 5); and the positive for COVID-19 (COVID-19, n = 27). Higher specific-SIgA for SARS-CoV-2, IFN-ß, and IFN-γ were found in the COVID-19 group than in the other groups. Increased IL-12p70 levels were observed in OTHERS group as compared to COVID-19 group. When the COVID-19 group was sub stratified according to the illness severity, significant differences and correlations were found for the same parameters described above comparing severe COVID-19 to the mild COVID-19 group and other non-COVID-19 groups. For the first time, significant differences are shown in the airway's mucosa immune responses in different groups of patients with or without respiratory SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/metabolism , COVID-19/immunology , Immunoglobulin A/metabolism , Interferons/metabolism , Lung/pathology , Nasal Mucosa/metabolism , SARS-CoV-2/physiology , Adolescent , Adult , Aged , Brazil , Child , Disease Progression , Female , Humans , Male , Middle Aged , Nasal Mucosa/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL